Faster, sharper, and deeper: structured illumination microscopy for biological imaging (2024)

  • Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).

    Article CAS Google Scholar

  • Strtohl, F. & Kaminski, C. F. Frontiers in structured illumination microscopy. Optica 3, 667–677 (2016).

    Article Google Scholar

  • Heintzmann, R. & Huser, T. Super-resolution structured illumination microscopy. Chem. Rev. 117, 13890–13908 (2017).

    Article CAS Google Scholar

  • Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).

    Article Google Scholar

  • Neil, M. A. A., Juskaitis, R. & Wilson, T. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. 22, 1905–1907 (1997).

    Article CAS Google Scholar

  • Wicker, K. & Heintzmann, R. Resolving a misconception about structured illumination. Nat. Photonics 8, 342–344 (2014).

    Article CAS Google Scholar

  • Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article CAS Google Scholar

  • Heintzmann, R. & Cremer, C. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc. SPIE 3568, 185–196 (1999).

    Article Google Scholar

  • Heintzmann, R. & Gustafsson, M. G. L. Subdiffraction resolution in continuous samples. Nat. Photonics 3, 362–364 (2009).

    Article CAS Google Scholar

  • Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination. Proc. SPIE 3919, 141–150 (2000).

    Article Google Scholar

  • Demmerle, J. et al. Strategic and practical guidelines for successful structured illumination microscopy. Nat. Protoc. 12, 988–1010 (2017).

    Article CAS Google Scholar

  • Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 104, 198101 (2010).

    Article Google Scholar

  • York, A. G. et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods 9, 749–754 (2012).

    Article CAS Google Scholar

  • Sheppard, C. J. R. Super-resolution in confocal imaging. Optik (Stuttg.) 80, 53–54 (1988).

    Google Scholar

  • Huff, J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat. Methods 12, 1205 (2015).

    Article Google Scholar

  • Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proc. Natl. Acad. Sci. USA 110, 21000–21005 (2013).

    Article CAS Google Scholar

  • Winter, P. W. & Shroff, H. Faster fluorescence microscopy: advances in high speed biological imaging. Curr. Opin. Chem. Biol. 20, 46–53 (2014).

    Article CAS Google Scholar

  • Roth, S., Sheppard, C. J. R., Wicker, K. & Heintzmann, R. Optical photon reassignment microscopy (OPRA). Opt. Nanoscopy 2, 5 (2013).

    Article Google Scholar

  • De Luca, G. M. R. et al. Re-scan confocal microscopy: scanning twice for better resolution. Biomed. Opt. Express 4, 2644–2656 (2013).

    Article Google Scholar

  • Azuma, T. & Kei, T. Super-resolution spinning-disk confocal microscopy using optical photon reassignment. Opt. Express 23, 15003–15011 (2015).

    Article CAS Google Scholar

  • Shroff, H. & York, A. Multi-focal structured illumination microscopy systems and methods. US patent 9696534 (2017).

  • York, A. G. et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods 10, 1122–1126 (2013).

    Article CAS Google Scholar

  • Dan, D. et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy. Sci. Rep. 3, 1116 (2013).

    Article Google Scholar

  • Cheng, L. C. et al. Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device. Biomed. Opt. Express 5, 2526–2536 (2014).

    Article Google Scholar

  • Yeh, L. H., Tian, L. & Waller, L. Structured illumination microscopy with unknown patterns and a statistical prior. Biomed. Opt. Express 8, 695–711 (2017).

    Article Google Scholar

  • Gustafsson, M. G. L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008).

    Article CAS Google Scholar

  • Sahl, S. J. et al. Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 352, 527 (2016).

    Article CAS Google Scholar

  • Li, D. & Betzig, E. Response to Comment on “Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics”. Science 352, 527 (2016).

    CAS PubMed Google Scholar

  • Ball, G. et al. SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci. Rep. 5, 15915 (2015).

    Article CAS Google Scholar

  • Zheng, W. et al. Adaptive optics improves multiphoton super-resolution imaging. Nat. Methods 14, 869–872 (2017).

    Article CAS Google Scholar

  • Guo, M. et al. Single-shot super-resolution total internal reflection fluorescence microscopy. Nat. Methods 15, 425–428 (2018).

    Article CAS Google Scholar

  • Visitech International Ltd. Scanning device, system and method. UK patent application GB1806845.2 (2018).

  • Kner, P., Chhun, B. B., Griffis, E. R., Winoto, L. & Gustafsson, M. G. L. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6, 339–342 (2009).

    Article CAS Google Scholar

  • Brunstein, M., Wicker, K., Hérault, K., Heintzmann, R. & Oheim, M. Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks. Opt. Express 21, 26162–26173 (2013).

    Article Google Scholar

  • Fiolka, R., Beck, M. & Stemmer, A. Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator. Opt. Lett. 33, 1629–1631 (2008).

    Article Google Scholar

  • Förster, R. et al. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator. Opt. Express 22, 20663–20677 (2014).

    Article Google Scholar

  • Sochacki, K. A., Dickey, A. M., Strub, M. P. & Taraska, J. W. Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat. Cell Biol. 19, 352–361 (2017).

    Article CAS Google Scholar

  • Nixon-Abell, J. et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354, aaf3928 (2016).

    Article Google Scholar

  • Huang, X. et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol. 36, 451–459 (2018).

    Article CAS Google Scholar

  • Shao, L., Kner, P., Rego, E. H. & Gustafsson, M. G. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods 8, 1044–1046 (2011).

    Article CAS Google Scholar

  • Fiolka, R., Shao, L., Rego, E. H., Davidson, M. W. & Gustafsson, M. G. L. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc. Natl. Acad. Sci. USA 109, 5311–5315 (2012).

    Article CAS Google Scholar

  • Lesterlin, C., Ball, G., Schermelleh, L. & Sherratt, D. J. RecA bundles mediate hom*ology pairing between distant sisters during DNA break repair. Nature 506, 249–253 (2014).

    Article CAS Google Scholar

  • Ingaramo, M. et al. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc. Natl. Acad. Sci. USA 111, 5254–5259 (2014).

    Article CAS Google Scholar

  • Winter, P. W. et al. Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples. Optica 1, 181–191 (2014).

    Article Google Scholar

  • Gregor, I. et al. Rapid nonlinear image scanning microscopy. Nat. Methods 14, 1087–1089 (2017).

    Article CAS Google Scholar

  • Wang, K. et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun. 6, 7276 (2015).

    Article CAS Google Scholar

  • Booth, M. J. Wavefront sensorless adaptive optics for large aberrations. Opt. Lett. 32, 5–7 (2007).

    Article Google Scholar

  • Thomas, B., Wolstenholme, A., Chaudhari, S. N., Kipreos, E. T. & Kner, P. Enhanced resolution through thick tissue with structured illumination and adaptive optics. J. Biomed. Opt. 20, 26006 (2015).

    Article Google Scholar

  • Power, R. M. & Huisken, J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14, 360–373 (2017).

    Article CAS Google Scholar

  • Breuninger, T., Greger, K. & Stelzer, E. H. K. Lateral modulation boosts image quality in single plane illumination fluorescence microscopy. Opt. Lett. 32, 1938–1940 (2007).

    Article Google Scholar

  • Keller, P. J. et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat. Methods 7, 637–642 (2010).

    Article CAS Google Scholar

  • Planchon, T. A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–423 (2011).

    Article CAS Google Scholar

  • Gao, L. et al. Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151, 1370–1385 (2012).

    Article CAS Google Scholar

  • Chen, B. C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article Google Scholar

  • Chang, B. J., Perez Meza, V. D. & Stelzer, E. H. K. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm. Proc. Natl. Acad. Sci. USA 114, 4869–4874 (2017).

  • Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).

  • Heintzmann, R., Jovin, T. M. & Cremer, C. Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 19, 1599–1609 (2002).

    Article Google Scholar

  • Rego, E. H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. USA 109, E135–E143 (2012).

  • Zhang, X. et al. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy. Proc. Natl. Acad. Sci. USA 113, 10364–10369 (2016).

    Article CAS Google Scholar

  • Curd, A. et al. Construction of an instant structured illumination microscope. Methods 88, 37–47 (2015).

    Article CAS Google Scholar

  • Young, L. J., Ströhl, F. & Kaminski, C. F. A guide to structured illumination TIRF microscopy at high speed with multiple colors. J. Vis. Exp. https://doi.org/10.3791/53988 (2016).

    Article PubMed PubMed Central Google Scholar

  • Laissue, P. P., Alghamdi, R. A., Tomancak, P., Reynaud, E. G. & Shroff, H. Assessing phototoxicity in live fluorescence imaging. Nat. Methods 14, 657–661 (2017).

    Article CAS Google Scholar

  • Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015).

    Article CAS Google Scholar

  • Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/07/03/236463 (2018).

  • Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol. 36, 460–468 (2018).

    Article CAS Google Scholar

  • Christiansen, E. M. et al. In silico labeling: predicting fluorescent labels in unlabeled images. Cell 173, 792–803 (2018).

    Article CAS Google Scholar

  • Faster, sharper, and deeper: structured illumination microscopy for biological imaging (2024)
    Top Articles
    Latest Posts
    Article information

    Author: Annamae Dooley

    Last Updated:

    Views: 5318

    Rating: 4.4 / 5 (45 voted)

    Reviews: 84% of readers found this page helpful

    Author information

    Name: Annamae Dooley

    Birthday: 2001-07-26

    Address: 9687 Tambra Meadow, Bradleyhaven, TN 53219

    Phone: +9316045904039

    Job: Future Coordinator

    Hobby: Archery, Couponing, Poi, Kite flying, Knitting, Rappelling, Baseball

    Introduction: My name is Annamae Dooley, I am a witty, quaint, lovely, clever, rich, sparkling, powerful person who loves writing and wants to share my knowledge and understanding with you.